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Abstract
Experiences of migratory species in one habitat may affect their survival in the next habi-
tat, in what is known as carryover effects. These effects are especially relevant for 
understanding how freshwater experience affects survival in anadromous fishes. Here, 
we study the carryover effects of juvenile salmon passage through a hydropower system 
(Snake and Columbia rivers, northwestern United States). To reduce the direct effect of 
hydrosystem passage on juveniles, some fishes are transported through the hydrosys-
tem in barges, while the others are allowed to migrate in-river. Although hydrosystem 
survival of transported fishes is greater than that of their run-of-river counterparts, their 
relative juvenile-to-adult survival (hereafter survival) can be less. We tested for carryover 
effects using generalized linear mixed effects models of survival with over 1 million 
tagged Chinook salmon, Oncorhynchus tshawytscha (Walbaum) (Salmonidae), migrating 
in 1999–2013. Carryover effects were identified with rear-type (wild vs. hatchery), 
passage-type (run-of-river vs. transported), and freshwater and marine covariates. 
Importantly, the Pacific Decadal Oscillation (PDO) index characterizing cool/warm (i.e., 
productive/nonproductive) ocean phases had a strong influence on the relative survival 
of rear- and passage-types. Specifically, transportation benefited wild Chinook salmon 
more in cool PDO years, while hatchery counterparts benefited more in warm PDO 
years. Transportation was detrimental for wild Chinook salmon migrating early in the 
season, but beneficial for later season migrants. Hatchery counterparts benefited from 
transportation throughout the season. Altogether, wild fish could benefit from transpor-
tation approximately 2 weeks earlier during cool PDO years, with still a benefit to hatch-
ery counterparts. Furthermore, we found some support for hypotheses related to higher 
survival with increased river flow, high predation in the estuary and plume areas, and 
faster migration and development-related increased survival with temperature. Thus, 
pre- and within-season information on local- and broad-scale conditions across habitats 
can be useful for planning and implementing real-time conservation programs.
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1  | INTRODUCTION

Carryover effects are often overlooked in management and conser-
vation of migratory species (O’Connor & Cooke, 2015; O’Connor, 
Norris, Crossin, & Cooke, 2014). These effects are how experiences in 
one habitat change performance in the next habitat. For example, the 
amount and quality of food available affect an individual’s fat reserves 
and can in turn affect its later survival and reproductive success. Thus, 
conservation can be improved if the effect of one habitat on the next 
is considered. These indirect effects have been documented across 
wide-ranging taxa including birds (Duriez, Ens, Choquet, Pradel, & 
Klaassen, 2012; Studds & Marra, 2005), mammals (Davy et al., 2016), 
amphibians (Chelgren, Rosenberg, Heppell, & Gitelman, 2006), reptiles 
(Ceriani et al., 2015), invertebrates (Hettinger et al., 2012), and fishes 
(Brosnan, Welch, Rechisky, & Porter, 2014; Russell et al., 2012).

To date, most carryover effects documented have been related 
to early-life effects on reproductive success (Harrison, Blount, Inger, 
Norris, & Bearhop, 2011). Survival effects have received less attention 
because of the challenges in tracking individuals and recording condi-
tions across habitats. Recent technological advances have diminished 
some of these challenges with increased accessibility to environmental 
data, usage of biologging, and availability of sufficiently long time se-
ries (Bograd, Block, Costa, & Godley, 2010; Drenner et al., 2012). It is 
now possible for preseason and within-season management decisions 
to include these types of information more effectively. In this study, 
we take advantage of an extensive dataset of tagged fish to examine 
carryover effects. Nonetheless, the general patterns and concept of 
carryover effects can be applicable to other migratory species.

Conservation of anadromous fish species is complex because, 
by definition, their life cycle spans both freshwater and marine 

environments. While the marine environment exerts broad and strong 
effects on survival (Mantua, Hare, Zhang, Wallace, & Francis, 1997; 
Rupp, Wainwright, Lawson, & Peterson, 2012), carryover effects from 
the river environment are also important (Russell et al., 2012). In the 
highly human-modified river system of the Snake and Columbia rivers 
(Idaho, Washington and Oregon, USA), several evolutionary signifi-
cant units of salmon and steelhead, Oncorhynchus species (Walbaum) 
(Salmonidae), are listed under the U.S. Endangered Species Act (NMFS 
2010). Hundreds of millions of U.S. dollars are spent annually in con-
servation efforts to reduce direct mortality during passage through 
multiple hydropower dams. The Juvenile Fish Transportation Program 
(USACE 2016) is one of the major conservation efforts designed to 
mitigate the effects of dam passage (Figure 1). However, the program 
has mixed success (Dietrich et al., 2016; Holsman, Scheuerell, Buhle, 
& Emmett, 2012). The direct survival of Chinook salmon through the 
hydropower system can be increased from 40–60% (DeHart et al., 
2015; Faulkner, Widener, Smith, Marsh, & Zabel, 2016) to nearly 100% 
(McMichael, Skalski, & Deters, 2011). However, transported fish can 
suffer higher rates of posthydrosystem mortality than their run-of-
river counterparts (DeHart et al., 2015; Smith, Marsh, Emmett, Muir, 
& Zabel, 2013). This can result in beneficial and detrimental net ef-
fects on adult salmon returns (reviewed in Anderson, Ham, & Gosselin, 
2012). The juvenile-to-adult survival of transported fish also depends 
on rear-types, with generally greater advantages to hatchery fish rel-
ative to wild fish. In essence, variation in survival can be attributed to 
three major factors: rear-type (wild vs. hatchery), passage-type (run-
of-river vs. transported), and conditions experienced.

Linking these factors of salmonid survival involves riverine, estu-
arine, coastal, and oceanic conditions (Brosnan et al., 2014; Holsman 
et al., 2012; Miller, Teel, Peterson, & Baptista, 2014; Scheuerell, Zabel, 

F IGURE  1 Chinook salmon (a) tagged 
as a juvenile, (b) transported in a barge at 
Lower Granite Dam, and (c) returned as an 
adult to Lower Granite Dam. Photograph 
credit: Benjamin P. Sandford

(a) (b)

(c)
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& Sandford, 2009). At the crux of carryover processes is ocean arrival 
timing of juveniles (or smolts) as they transition from freshwater to 
marine environments. The timing of the transition is an important pre-
dictor of Snake River Chinook salmon survival (Petrosky & Schaller, 
2010; Scheuerell et al., 2009). This migration timing is dependent on 
river temperatures and flows the juveniles experienced. Additionally, 
temperature affects growth, metabolic rates, development, behavior, 
and predator–prey interactions (McCullough et al., 2009). Thus, trans-
portation that reduces juvenile river passage from weeks to days can 
strongly affect their timing of ocean entry, fish condition, and survival.

While mortality is high in the coastal ocean (Brosnan et al., 2014), 
the greater prey resources also afford higher growth than in the river 
(Burke et al., 2013; Weitkamp et al., 2015). Growth and survival have 
been related to indices of local marine conditions, such as an up-
welling index (Logerwell, Mantua, Lawson, Francis, & Agostini, 2003; 
Scheuerell & Williams, 2005) and sea surface temperatures (Drenner 
et al., 2012; Miller et al., 2014). These processes involve shifts in the 
abundance and quality of the copepod and ichthyoplankton forage 
base (Daly, Auth, Brodeur, & Peterson, 2013; Peterson et al., 2014). 
These occur through variations in the horizontal advection of oce-
anic surface water to the near habitat, and upwelling within the hab-
itat; both of which vary with the PDO index (Bi, Peterson, & Strub, 
2011). Beyond the local environment, broad-scale variations of the 
PDO (Mantua et al., 1997), North Pacific Gyre Oscillation (NPGO) (Di 
Lorenzo et al., 2008), and Multivariate El Niño-Southern Oscillation 
(Wolter & Timlin, 1993) indices correlate to measures of adult salmon 
abundances, survival, productivity, and growth (Burke et al., 2013; 
Peterson et al., 2014; Rupp et al., 2012; Wells, Grimes, Field, & Reiss, 
2006). Thus, understanding and predicting salmonid survival in the 
early ocean environment require information at local and basin scales, 
and at seasonal and annual scales (Brosnan et al., 2014; Duffy & 
Beauchamp, 2011; Weitkamp et al., 2015; Wells et al., 2016).

The goal of this study was to investigate the carryover effects of 
salmon experience during hydrosystem passage on their juvenile-to-
adult survival. This study demonstrates that the largest influences on 
survival involve seasonal river migration timing and the phase of the 
PDO index. The local freshwater and marine covariates have weaker 
effects on survival and differ among rear-types and passage-types. 
Most notably, the analysis demonstrates that benefits of the juvenile 
transportation for wild and hatchery salmon differ and depend on the 
phase of the PDO index.

2  | MATERIALS AND METHODS

We examined Chinook salmon survival with generalized linear mixed 
effects models (Zuur, Ieno, Walker, Saveliev, & Smith, 2009). We 
grouped covariates in a cumulative manner that reflected their life 
cycle from the freshwater to the marine environment: the migra-
tion–timing models (MT) incorporated day of year (DOY) of passage 
at Bonneville Dam (BON) as an index; the freshwater models (MT–
FW) added local, seasonal river conditions; the marine models (MT–
FW–M) added local, estuarine, plume, and coastal ocean conditions; 

and the climate models (MT–FW–M–C) added a categorical index of 
large-scale, climate-influenced, marine conditions. Notably, the local 
covariates tested are collected in real time, and the large-scale, climate 
covariate can be predicted at a coarse scale several months in the fu-
ture (Newman et al., 2016). Therefore, the covariates tested can be 
used in real time for management of juveniles migrating through the 
hydropower system, and the marine and climate conditions are not 
considered without freshwater conditions. Also, our analysis builds on 
the results from Holsman et al. (2012), Scheuerell et al. (2009), and 
Satterthwaite et al. (2014) that found migration timing to be an impor-
tant predictor of survival.

2.1 | Data

2.1.1 | Fish samples and treatment groups

We analyzed spring/summer runs of Chinook salmon from the Snake 
River system. These individuals originated above Lower Granite Dam 
(LGR) and migrated to the ocean in years 1999–2013. We tested 
different treatment groups by combinations of rear-type (wild or 
hatchery) and passage-type (run-of-river or transported). For each 
treatment group, we modeled its survival from its own dataset. The 
fish were tagged with passive-integrated transponder (PIT) tags, and 
these data are publically available through the Columbia Basin PIT 
Tag Information System (www.ptagis.org). All run-of-river fish in the 
dataset were detected at BON, the last dam encountered during their 
outmigration. Transported fish were loaded onto barges at LGR and 
then transported to a release site downstream of BON. Survival was 
calculated from juvenile passage at BON or release below BON to 
adult returns at LGR. LGR was chosen as the adult detection site to ac-
count for any increased probability of straying during upstream migra-
tion in transported fishes (Bond et al., 2017; Keefer & Caudill, 2014). 
Thus, juvenile-to-adult survival in this study includes successful return 
of adults to LGR. Furthermore, only juveniles passing BON between 
DOY 100 and 180 were included in the analysis because of insuffi-
cient numbers of fish early and late in the season. See Figures S1 and 
S2, for yearly sample sizes of juveniles and adults.

2.1.2 | Fish and environmental covariates

The fish and freshwater covariates from the first habitat were tested 
for carryover effects, while marine and climate covariates from the 
second habitat were tested for direct effects and their moderation of 
first habitat carryover effects (Table 1).

Migration timing
The covariate DOY of BON passage was tested for linear (i.e., d) and 
nonlinear (i.e., d2) patterns (PIT Tag Information System, ptagis.org).

Freshwater covariates
The freshwater covariates were river flow (f) and the residual effect 
of river temperature (t) measured on the day of passage at BON (U.S. 
Army Corps of Engineers, accessed via www.cbr.washington.edu/

http://www.ptagis.org
http://www.ptagis.org
http://www.cbr.washington.edu/dart/river.html
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dart/river.html). Because of high correlation between river tempera-
ture and d (Table S1), a residual effect t was calculated as residuals 
from the linear regression between river temperature and d.

Marine covariates
The estuarine and marine environmental covariates were the coastal 
upwelling index (U) at 45°N 125°W (Pacific Fisheries Environmental 
Laboratory, www.pfeg.noaa.gov) and the residual effect of mean sea 
surface temperature (T) across five stations in the coastal ocean near 
Columbia River (National Data Buoy Center, www.ndbc.noaa.gov) 
after accounting for the migration timing index d. We also tested the 
salt intrusion length (E) as a covariate of the Columbia River estu-
ary, and the volume (V) as a covariate of the Columbia River plume 
(Climatological Atlas for DB33, www.stccmop.org). Covariates E and V 
are products of the Virtual Columbia River (Baptista et al., 2015) that 
were computed from numerical simulations of 3D baroclinic circula-
tion (Kärnä & Baptista, 2016). Because the migration timing through 
the estuary and coastal ocean was not observed, we used a 7-day 
rolling mean right-aligned to d for these marine covariates based on 
estimates reviewed in Dietrich et al. (2016).

Climate covariate
The PDO index exhibits oscillatory patterns that represent large-
scale marine and climate conditions (Mantua et al., 1997; Newman 
et al., 2016; Peterson et al., 2014). A negative PDO index represents 

relatively cool sea surface temperatures along the Pacific Coast. 
Conversely, a positive PDO index represents relatively warm coastal 
sea surface temperatures. The cool/warm phases of the PDO index 
can be predictive of the prey resources and predators (Emmett & 
Krutzikowsky, 2008; Peterson et al., 2014).

Although we do not know the value of the PDO index that the 
salmon will experience months into the future, we can at least rea-
sonably predict whether the index will be positive or negative based 
on recent trends. Newman et al. (2016) showed an autocorrelation of 
at least 0.5, with a lag of up to 6 months. Such a binary index is rea-
sonable given the strong and divergent effects from opposing climate 
phases and the presence of thresholds or tipping points (Hunsicker 
et al., 2016; Samhouri et al., 2017).

We determined a binary PDO index based on the mean PDO index 
May through September in the year of outmigration. In the model, the 
negative values of the mean PDO index was scored as I = 1 to represent 
cool and favorable conditions. Conversely, positive values of the mean 
PDO index was I = 0 to represent warm and unfavorable conditions.

2.2 | Analysis

2.2.1 | Survival

The survival predicted from the models, expressed as a probability 
of a juvenile at BON returning as an adult to LGR (i.e., Bernoulli trial), 

TABLE  1 Model covariates related to each juvenile by day of passage at BON were grouped as migration timing (MT), freshwater (F), marine 
(M), or climate (C) covariates

Name Symbol Description Units Source of data
Covariate 
group

Migration–timing index d DOY when passage at BON occurred day www.ptagis.org/ MT

River temperature t Residual effect of river temperature 
WQM at BON, after controlling for d

°C http://www.cbr.washington.
edu/dart/river.html

F

River flow f Flow at BON when passage occurred kcfs http://www.cbr.washington.
edu/dart/river.html

F

Sea surface 
temperature

T Residual effect of 7-day rolling mean 
of sea surface temperature from 
NDBC buoys (stations lapw1, 46211, 
46041, 46029, and 46050), after 
controlling for d

°C www.ndbc.noaa.gov or http://
www.cbr.washington.edu/
dart/buoy_com.html

M

Coastal upwelling 
index

U 7-day rolling mean of coastal 
upwelling index at 45°N 125°W

m3 per second 
per 100 m of 
coastline

http://www.pfeg.noaa.gov/ or 
http://www.cbr.washington.
edu/dart/upwell_com.html

M

Estuary salt intrusion 
length

E Residual effect of 7-day rolling mean 
of maximum along channel distance 
upstream of the river mouth where 
salinity ≥1 practical salinity unit, after 
accounting for flow f

km http://www.stccmop.org/
datamart/virtualcolumbiari-
ver/simulationdatabases/
climatologicalatlas_db33

M

Plume volume V Residual effect of 7-day rolling mean 
of plume volume, after accounting 
for flow f

m3 http://www.stccmop.org/
datamart/virtualcolumbiari-
ver/simulationdatabases/
climatologicalatlas_db33

M

Categorical PDO index I 1 for favorable ocean conditions with 
PDO < 0, and 0 for unfavorable 
ocean conditions with PDO > 0.

unitless http://research.jisao.
washington.edu/pdo/PDO.
latest

C

http://www.cbr.washington.edu/dart/river.html
http://www.pfeg.noaa.gov
http://www.ndbc.noaa.gov
http://www.stccmop.org
http://www.ptagis.org/
http://www.cbr.washington.edu/dart/river.html
http://www.cbr.washington.edu/dart/river.html
http://www.cbr.washington.edu/dart/river.html
http://www.cbr.washington.edu/dart/river.html
http://www.ndbc.noaa.gov
http://www.cbr.washington.edu/dart/buoy_com.html
http://www.cbr.washington.edu/dart/buoy_com.html
http://www.cbr.washington.edu/dart/buoy_com.html
http://www.pfeg.noaa.gov/
http://www.cbr.washington.edu/dart/upwell_com.html
http://www.cbr.washington.edu/dart/upwell_com.html
http://www.stccmop.org/datamart/virtualcolumbiariver/simulationdatabases/climatologicalatlas_db33
http://www.stccmop.org/datamart/virtualcolumbiariver/simulationdatabases/climatologicalatlas_db33
http://www.stccmop.org/datamart/virtualcolumbiariver/simulationdatabases/climatologicalatlas_db33
http://www.stccmop.org/datamart/virtualcolumbiariver/simulationdatabases/climatologicalatlas_db33
http://www.stccmop.org/datamart/virtualcolumbiariver/simulationdatabases/climatologicalatlas_db33
http://www.stccmop.org/datamart/virtualcolumbiariver/simulationdatabases/climatologicalatlas_db33
http://www.stccmop.org/datamart/virtualcolumbiariver/simulationdatabases/climatologicalatlas_db33
http://www.stccmop.org/datamart/virtualcolumbiariver/simulationdatabases/climatologicalatlas_db33
http://research.jisao.washington.edu/pdo/PDO.latest
http://research.jisao.washington.edu/pdo/PDO.latest
http://research.jisao.washington.edu/pdo/PDO.latest
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was estimated with a generalized linear mixed effects model (GLMM; 
Zuur et al., 2009):

where we have the binary outcome yij of whether or not individual i 
(i = 1, …, n) returns as an adult with probability pij in a Bernoulli distri-
bution, fixed effect intercept β0, random effect intercept b0j for year j, 
fixed slope β1 and random slope b1j in year j for covariate d, fixed slope 
β2 and random slope b2j in year j for covariate d

2, and fixed slope βk 
for covariate k (i.e., all covariates in Table 1, except for d), in which xk 
is the measured value of covariate k for individual i. Random effects 
were assumed independent and normally distributed with zero means 
and constant respective variances σ. Fixed effect covariates, except 
I, were standardized to a mean of 0 and standard deviation 1 for im-
proved model fitting and convergence.

All possible combinations of covariates in Equation 2 were 
tested, with the exception that models with a quadratic term (d2) 
also included a linear term (d). We tested random intercept effects 
of year and random slope effects of year for the migration timing 
covariates (d and d2) but not for other covariates. Model averaging 
was determined using the bias-corrected Akaike information crite-
rion for small sample sizes (AICc; Burnham & Anderson, 2002), and 
by the weighted average of the predictions ̄Y , conditional on the 
covariate being present in model m, ̄Y=

∑M

m=1
ωmYm, where M is the 

total number of models (i.e., M = 768), and ωm is the ∆AICc–based 

weight proportional to 1: ωm=
exp

�

−
ΔAICcm

2

�

∑M

m=1
exp

�

−
ΔAICcm

2

�. The associated 

weights were used to determine the 99% confidence set of models 
for each “rear-type × passage-type” treatment group. To assess the 
relative importance of models at each cumulative grouping of co-
variates, we determined the weights for models associated with 
each grouping while excluding models from lower-level groupings 
(e.g., MT–FW–M grouping excluded models in MT and MT–FW 
groupings). The model-averaged parameters and relative importance 
of covariates across models in the 99% confidence set were deter-
mined. The analysis was conducted in R© 2016 The R Foundation 
for Statistical Computing (version 3.3.2) with the glmer function 
from the lme4 package (version 1.1-12) and the model.avg func-
tion from the MuMIn package (version 1.15.6).

2.2.2 | Effectiveness of transportation program

A ratio of survival (S) for transported to run-of-river fish (i.e., differ-
ential delayed mortality, D = Stransport/Srun-of-river), characterizes the 

effectiveness of the juvenile fish transportation program after fish 
have passed BON (reviewed in Anderson et al., 2012). Thus, D > 1 
indicates an advantage from transportation on posthydrosystem 
survival, while D = 1 indicates no effect, and D < 1 indicates a detri-
mental effect. To determine the effect of transportation from LGR on 
survival, relative to that of run-of-river counterparts, we would need 
to incorporate the hydropower system survival of transported fish 
approximating 100% (McMichael et al., 2011) and the hydropower 
system survival of run-of-river fish approximating 50% (DeHart et al., 
2015; Faulkner et al., 2016). D was thus compared to a threshold of 
0.5 instead of 1 (reviewed in Anderson et al., 2012).

Patterns of D were determined from simulations based on our 
model-averaged GLMMs of survival. We simulated parameters from 
the sampling distributions of the maximum likelihood estimates from 
our GLMMs, where the sampling distributions were assumed to be 
multivariate normal with means equal to the estimated regression 
parameters and covariances equal to the associated estimated co-
variance matrices for the parameters. These simulations were run 
in R© 2016 The R Foundation for Statistical Computing (version 
3.3.2) with the sim function in the arm package (version 1.9-3). 
Furthermore, to obtain model-averaged survival estimates, a simula-
tion was run for each candidate model of the confidence set, and the 
predicted survival probabilities were weighted by ωm accordingly. To 
determine patterns of D with fixed effects only, we first generated a 
set of 1,000 model-averaged simulations for each passage-type and 
rear-type combination based on draws of fixed effect parameters only. 
Then, we also included the random effects from the simulated sets 
estimated for the 15 years of data. Finally, to visualize patterns of D in 
cool and warm PDO years separately, we applied the simulated param-
eters to the average observed values of covariates across years with 
I = 1 or 0, respectively.

3  | RESULTS

Across both rear-types and both passage-types, the PDO index Ι and 
migration timing indices d and/or d2 were the most influential predic-
tors (Figures 2 and 3; Table 2). Interannual differences in survival were 
thus explained by Ι, in which the cool phase implies favorable ocean 
conditions. The seasonal survival patterns were captured by d2 for all 
rear-type and passage-type combinations, except wild run-of-river 
Chinook salmon. The model-averaged fits thus generally showed a 
dome-shaped pattern but also other nonlinear patterns (Figures 2 and 
4; Figures S3–S5). Starting in mid-April, survival generally increased 
until about mid-May and decreased thereafter through June. In con-
trast, wild run-of-river Chinook survival declined through the season. 
Overall, Ι characterizes the interannual survival variation, and d and d2 
characterize seasonal survival variations.

While the interannual and seasonal variations (Figures 4, S3–S5) 
were largely captured by Ι and d, local riverine and marine seasonal co-
variates also contributed to the variations (Figure 3). The wild run-of-
river Chinook salmon survival (Figure 3a,b) was influenced positively 
by residual river temperature t and negatively by upwelling index U. 

(1)yij∼Bernoulli(pij)

(2)logit(pij)=β0+b0j+ (β1+b1j)di+ (β2+b2j)d
2
i
+

K
∑

k=3

βkxki

b0j∼N(0,σ0)

b1j∼N(0,σ1)

b2j∼N(0,σ2)
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Thus, wild fish appeared to benefit from both relatively warmer tem-
peratures in the river and sea surface as weak upwelling can result in 
warmer coastal sea surface temperatures. Note that the temperature 
index is a residual after accounting for the negative effects from later 
migration timing and correlated warmer temperatures. The hatchery 
run-of-river survival was influenced positively by flow f and negatively 
by residual plume volume V after accounting for flow. These patterns 
suggest that wild Chinook salmon are responding to temperature-
related covariates, while the hatchery run-of-river fish are responding 
to flow-related covariates.

For transported Chinook salmon (Figure 3c,d), wild fish survival 
was influenced by local marine covariates. In contrast, hatchery fish 
survival was influenced by temperature-related covariates in both 
river and marine environments. Specifically, wild fish benefited from a 
positive residual sea surface temperature T after accounting for migra-
tion timing. The positive effect of T may involve faster migration rates 
and development. Also, the negative effect from the residual plume 
volume V suggests that the plume is an area of relatively high mortal-
ity. For the hatchery counterparts, survival improved with a positive 
residual river temperature t, a negative residual sea surface tempera-
ture T, and a positive upwelling index U. Together, these patterns show 
differing effects on survival across rear-types and passage-types.

The benefits and detriments of transportation represented by D 
were different for wild and hatchery Chinook salmon (Figure 5a,b). 
The value of transportation for wild Chinook went from detrimental 
to beneficial over the migration season. In contrast, transportation 
generally benefited hatchery Chinook across the season. The advan-
tages of transportation were clearer when including the hydropower 

system survival and comparing D to a threshold of 0.5. Yet, detrimental 
effects from transportation to wild Chinook salmon were still appar-
ent in April. When including the simulated random effects, a seasonal 
increase in D remained in wild fish (Figure 5c), whereas hatchery fish 
showed seasonally decreasing, increasing, and flat patterns (Figure 5d). 
The range of uncertainty in D from the simulations including random 
effects spanned across 1 and 0.5 (i.e., no clear benefit or detriment 
of transportation) throughout the season for both wild and hatchery 
rear-types (Figure 5c,d). Thus, other influences on survival that were 
not explicitly tested in this study were captured by the random effects.

4  | DISCUSSION

Conservation efforts across wide-ranging taxa can be improved 
by considering ecological carryover effects across life stages 
(O’Connor & Cooke, 2015). For example, experiences during rear-
ing, overwintering, and migration in the first habitat can result in 
changes in performance and survival in later life stages. The effects 
could involve physiological processes (Davy et al., 2016; McKinnon, 
Stanley, & Stutchbury, 2015; Midwood, Larsen, Boel, Aarestrup, & 
Cooke, 2015), genetic influences (Ceriani et al., 2015), and conser-
vation practices (Holsman et al., 2012). Figure 6 demonstrates the 
complexity of interactions.

The concept of carryover effects is particularly powerful for the 
restoration of Columbia River salmonids. While many studies from 
the Columbia River Basin tested ocean conditions as a covariate to 
Chinook salmon productivity and abundances (Burke et al., 2013; 

F IGURE  2 Modeled survival through 
outmigration seasons 1999–2013 for wild/
hatchery, run-of-river/transported Chinook 
salmon. CI represents confidence interval. 
See Figure 3 for model parameters and 
relative importance of covariates
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Petrosky & Schaller, 2010), few have looked at interactions among 
freshwater and ocean covariates on survival linked to migration timing 
(Holsman et al., 2012). Our current study identified that the relative 
benefit of transportation on survival depends on the cool/warm PDO 
phase (Figure 5).

4.1 | Transportation decisions

From a carryover effects perspective, we demonstrated that the ef-
fectiveness of transporting juvenile Chinook salmon on subsequent 
life stage survival differed among rear-types. Transporting wild ju-
veniles had a greater positive impact on their survival in cool than 
warm PDO years. Given general favorable conditions during cool 
years, earlier ocean arrival timing can result in greater opportunity to 
reach higher growth rates than that conferred in the river environ-
ment (Weitkamp et al., 2015). As well, conditions experienced dur-
ing barge transportation may be more stressful to wild fish in warm 

than cool years. Effects can include disease (Dietrich et al., 2011) and 
stress from cotransportation with juvenile steelhead (Sandford, Zabel, 
Gilbreath, & Smith, 2012).

In contrast, transportation was more beneficial to hatchery 
Chinook salmon in warm than cool years. It is possible that transpor-
tation helped to minimize stressful exposure of hatchery juveniles to 
lower flow and warmer river conditions that generally occur in years 
with a positive (warm) PDO index (Mote, 2003; current study). This 
pattern supports the hypothesis that reducing stressful conditions ex-
perienced by juveniles in one life stage can result in higher survival in 
later life stages. The opposing pattern between rear-types may occur 
because hatchery fish do not survive as well as wild fish in the early 
marine environment during years of poor ocean conditions (Beamish 
et al., 2012). Hatchery fish may need additional relief from stressful 
hydrosystem conditions that then carry over to benefit survival in 
subsequent life stages. Additionally, harvest is more intense on hatch-
ery fish. Although we are not aware of differential harvest between 

F IGURE  3 Standardized parameter estimates and relative importance of covariates in model-averaged generalized linear mixed effects 
modeling of survival for run-of-river and transported Chinook salmon. Covariates are described in Table 1. Error bars represent standard 
deviation. Statistical significance denoted as * for p < .05 and • for p < .1
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transported and run-of-river fish, this may contribute to the rear-type 
differences observed.

Differing patterns among rear-types, populations, and species can 
make decisions about conservation strategies challenging. Generally, 
wild fish are the focus of conservation, and hatchery fish are produced 
to help enhance fishery production (Naish et al., 2007). Thus, the deci-
sion to transport in cool years could be more heavily weighted in favor 
of the positive effects on wild fish, but at some cost to the survival 
of hatchery fish. The effects of transportation on survival in hatch-
ery Chinook salmon are generally positive or neutral (i.e., D ≥ 1) across 
warm and cool PDO years. Thus, transporting hatchery Chinook 
salmon in cool years is not necessarily a counterproductive mitigation 
strategy for hatchery fish, but rather a lost opportunity to increase 
their posthydrosystem survival. Overall, the PDO index can serve as 
an annual baseline to help predict whether transportation will be a 
beneficial or disadvantageous conservation strategy.

4.2 | Annual patterns

The basis for large-scale effects of the PDO index stems from rela-
tionships of climate indices with oceanographic and ecosystem pro-
cesses. Local ecosystem dynamics (e.g., high-lipid copepods at lower 
trophic levels relate to higher salmon survival) are linked to large-scale 
oceanographic forcings as indexed by the PDO (Bi et al., 2011). As 
well, salmon recruitment links to NPGO through food web processes 
and feeding ecology (Hertz et al., 2016). Multiple ecological pathways 
link large-scale climate indices to salmon recruitment, but the PDO 

appears to be more influential than the NPGO or Oceanic Niño indi-
ces (Malick, Cox, Peterman, Wainwright, & Peterson, 2015). Our study 
extends the importance of the PDO index as a mediator of carryover 
effects. Although specific ocean conditions are difficult to forecast, 
our study shows that even a categorical climate index provides practi-
cal and actionable information for decision makers.

Forecasting ocean conditions undoubtedly provides information 
for decisions on salmonid conservation. For example, Chittenden et al. 
(2010) suggested that upwelling forecasts are useful for timing of 
hatchery releases to improve marine survival. However, the timeliness, 
accuracy, and certainty of forecasts are essential for effective conser-
vation. Implementation of the information from the current study 
will require real-time or forecasted fish, river, and ocean data. Also of 
value is forecasting a simple categorical index of a positive or negative 
PDO phase. This is possible given the high degree of autocorrelation 
within a 6-month window and ongoing advances in oceanography (Di 
Lorenzo et al., 2013; Newman et al., 2016).

4.3 | Seasonal patterns

In addition to the annual, large-scale conditions of the ocean, there are 
within-season effects. Anadromous fishes have evolved to enter the 
ocean at a time of favorable conditions (i.e., physiological and ecologi-
cal “smolt window”; McCormick, Hansen, Quinn, & Saunders, 1998; 
Thorstad et al., 2012). Correspondingly, migration timing is a major 
determinant of survival for salmonids (Jonsson & Jonsson, 2014; 
McCormick et al., 1998; Scheuerell et al., 2009). In the river, migration 

Cumulative grouping 
of covariates

Number of 
models Minimum ΔAICc Maximum ΔAICc Weight

(a) Wild, run-of-river Chinook

 MT 1 (6) 7.255 (7.255) 7.255 (65.529) 0.0022

 MT-FW 3 (18) 8.118 (8.118) 9.918 (65.226) 0.0028

 MT-FW-M 56 (360) 2.632 (2.632) 12.260 (69.448) 0.1693

 MT-FW-M-C 78 (384) 0.000 (0.000) 12.389 (67.506) 0.8158

(b) Wild, transported Chinook

 MT 0 (6) – (25.207) – (97.816) 0.0000

 MT-FW 0 (18) – (19.219) – (98.612) 0.0000

 MT-FW-M 0 (360) – (11.365) – (104.495) 0.0000

 MT-FW-M-C 40 (384) 0.000 (0.000) 9.575 (100.776) 0.9903

(c) Hatchery, run-of-river Chinook

 MT 1 (6) 10.850 (10.850) 10.850 (80.327) 0.0004

 MT-FW 3 (18) 3.987 (3.987) 10.387 (61.156) 0.0176

 MT-FW-M 53 (360) 2.808 (2.808) 10.964 (81.404) 0.1831

 MT-FW-M-C 75 (384) 0.000 (0.000) 11.068 (80.534) 0.7890

(d) Hatchery, transported Chinook

 MT 0 (6) – (20.079) – (577.703) 0.000

 MT-FW 0 (18) – (16.441) – (577.987) 0.000

 MT-FW-M 26 (360) 1.317 (1.317) 9.464 (581.162) 0.3085

 MT-FW-M-C 40 (384) 0.000 (0.000) 9.2401 (578.800) 0.6816

TABLE  2 Number of models, minimum 
and maximum ∆AICc, and weight for the 
99% confidence set, and all models tested 
in parentheses. Results reported are for 
models at each cumulative grouping of 
covariates (i.e., MT, MT–FW, MT–FW–M, 
and MT–FW–M–C), excluding models in 
lower-level groupings. For each rear-type 
and passage-type combination, the 
cumulative grouping of covariates with 
greatest weight is bolded
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timing can be related to temperature and flow (McCormick et al., 
1998; Petrosky & Schaller, 2010; Scheuerell et al., 2009; Thorstad 
et al., 2012). More specifically, increased river temperatures can re-
sult in faster physical and physiological changes and earlier migration 
(Russell et al., 2012; Sykes, Johnson, & Shrimpton, 2009; Zydlewski, 
Haro, & McCormick, 2005). At ocean entrance, timing can be an index 
of both the environmental conditions and the predator and prey com-
munities the juveniles encounter (Emmett, Krutzikowsky, & Bentley, 
2006; Hvidsten et al., 2009; Logerwell et al., 2003; Wells et al., 2016). 
Although a detailed study of biological and ecological processes that 

affect juvenile-to-adult survival was beyond the scope of the study, 
we identified that migration timing continues to be a covariate of sig-
nificant importance.

Further research on processes underlying migration timing and 
survival will arm decision makers with information to improve conser-
vation strategies. Numerous studies revealed that freshwater–marine 
carryover effects on salmon survival generally involve physiologi-
cal development (Drenner et al., 2012; Russell et al., 2012), fish size 
(Jonsson & Jonsson, 2014; Zabel & Achord, 2004), and growth- and 
size-selective mortality (Miller et al., 2014; Woodson et al., 2013). 

F IGURE  4 Wild, run-of-river Chinook salmon survival observed (passive-integrated transponder-tagged) and modeled (model-averaged 
generalized linear mixed effects model, GLMM) estimates for each outmigration season 1999–2013. Gray points represent weekly observed 
estimates of survival. The size of points is representative of weekly juvenile sample sizes, as denoted numerically by light gray shading of daily 
smolt run. See Figures S3–S5 for other rear-types and passage-types of Chinook salmon
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Altogether, these and other studies emphasize the importance of 
juveniles entering the ocean in optimal physiological and ecological 
conditions (Hvidsten et al., 2009; McCormick et al., 1998; Wells et al., 
2016). One common underlying factor related to these physiological 
and ecological processes is temperature. Increasing temperatures over 
the last several decades correspond to juveniles migrating earlier and 
at smaller sizes and younger ages, particularly at northern latitudes 
(Kovach, Joyce, Echave, Lindberg, & Tallmon, 2013; Otero et al., 2014; 
Russell et al., 2012). Thus, understanding mechanisms of migration 
timing will be especially important with river and ocean environments 
warming at different rates as climate changes (IPCC, 2014). Notably, 
correlations between river migration timing and ocean survival will 
likely change (Kennedy & Crozier, 2010).

The seasonal covariates in this study have been highlighted in 
other studies: higher survival with increased river flow, faster migra-
tion and development with increased temperature, and high preda-
tion in the estuary and plume areas (Brosnan et al., 2014; McCullough 
et al., 2009; Petrosky & Schaller, 2010). Yet, much uncertainty remains 
with the random effects of year and their interactions with migration 
timing. Other modeling approaches that capture more complex eco-
system dynamics may improve forecasting carryover effects. These 
include dynamic linear modeling (Scheuerell & Williams, 2005), nonlin-
ear models with generalizable thresholds for management (Hunsicker 
et al., 2016), and models of intermediate complexity that incorporate 
data closely reflecting bottom-up and top-down processes (Wells 
et al., 2017).

In addition, the patterns of carryover effects captured in random 
effects can be further clarified by separating the adult upstream mi-
gration life stage from the ocean life stage. Increased rates of straying 
are known to occur for transported fishes (Bond et al., 2017; Keefer & 
Caudill, 2014). We used a detection site of adult returns past known 
locations of straying to account for this behavior. However, river con-
ditions during upstream migration can stimulate straying (e.g., for ther-
mal refuge). The lack of covariates during upstream migration could 
explain some of the patterns expressed as random effects in our study. 
There are thus direct effects of conditions experienced in each habitat 
and carryover effects from a previous habitat that are mediated by 
conditions in the current habitat.

4.4 | Final thoughts

A growing concern in conservation is larger and more frequent mis-
matches between migration timing and timing of resources in subse-
quent habitats (Both, Bouwhuis, Lessells, & Visser, 2006; O’Connor 
et al., 2014). To address this concern effectively, our study showed 
that the effects of migration timing on survival need to be inter-
preted in context of carryover effects. Furthermore, migration timing 
can be an index of underlying processes involving the timing, quan-
tity, and quality of resources, competitors, and predators across habi-
tats. Thus, data on migration timing and the underlying processes can 
be particularly important information for deciding when and how to 
release juveniles in coastal fishery practices (e.g., restocking, stock 

F IGURE  5 Differential delayed 
mortality (D = Stransport/Srun-of-river) across 
cool/warm PDO phases simulated from 
the model-averaged GLMM of Chinook 
salmon survival (S) with (a and b) fixed 
effects parameters only, and (c and d) fixed 
effects and random effects parameters, 
for wild and hatchery rear-types. 
Horizontal lines represent thresholds for 
which an advantage or disadvantage of 
transportation occurs in survival after the 
hydropower system (i.e., D = 1), or inclusive 
of the hydropower system (D ≈ 0.5)
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enhancement, and sea ranching; Bartley & Bell, 2008). Explicitly 
considering carryover effects with pre- and within-season data can 
help target conservation efforts more effectively. As shown in our 
study, considering large-scale marine conditions helped to identify 
which years and when in the season it is more effective to transport 
juveniles. Applying large-scale ocean forecasts with knowledge of 
stock-  and passage-specific carryover effects may provide a useful 
and practical strategy for buffering the effects of a changing climate 
on anadromous fishes.
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